
2
MSL Driver Overview

Introduction . 2-1

MSL Driver Functionality . 2-1

MSL Drivers are NLMs . 2-1

MSL Driver Components . 2-2
Driver Procedures . 2-2

DriverInitialize . 2-2
DriverControl . 2-2
DriverSend . 2-3
DriverBuildSend . 2-3
DriverEmergencySend . 2-3
DriverISR . 2-3
DriverRemove . 2-4

Data Structures and Variables . 2-4
Message Packet Format . 2-5

MSL Driver Environment . 2-6
Multi-Tasking, Non-Preemption OS . 2-6
32-Bit Protected Mode . 2-6
Reentrancy . 2-6
Execution Times . 2-6

Process Time . 2-7
Interrupt Time . 2-8
Process or Interrupt Time . 2-8

C Calling Conventions . 2-9

MSL Driver Overview

Introduction

The Mirrored Server Link requires a special driver customized to the
specifications of the SFT III server-to-server communications interface.
This chapter summarizes the basic functions of the MSL driver.
Specific issues that influence the development of the MSL driver will
also be addressed.

MSL Driver Functionality

The basic responsibility of the MSL driver is to transmit and receive
message packets through the mirrored server communications link.
It is crucial that this process be as efficient as the hardware will allow.

The MSL driver must guarantee message delivery and is responsible for
message integrity. The driver must ensure that the data it receives is
error-free before returning message acknowledgments. Although the
operating system provides an optional high-level checksum of packets,
the driver is ultimately responsible for packet transmission integrity.

The driver must provide duplicate packet suppression. The server
checks for duplicate packets; failure to suppress duplicate packets will
cause the secondary server to fail.

An MSL driver must detect Mirrored Server Link failures and notify
the operating system accordingly. This includes detecting breakdowns
in the communications link, as well as failures in the companion server.
The driver uses operational timeouts and notifications from the
hardware to detect these failures.

MSL Drivers are NLMs

Mirrored Server Link (MSL) drivers for NetWare SFT III are NetWare
Loadable Modules (NLMs). MSL drivers must be converted from object
form to a special Loadable Module form, referred to as a super-object
file. The driver must provide basic NLM interface routines that adhere
to NLM interface specifications and facilitate dynamic loading and
unloading.

The driver must also follow prescribed procedures, and must utilize the
defined standard routines outlined in Chapter 5 to interface to the
operating system. The driver must export its required NLM interface
routines and import any required NetWare SFT III operating system
interface routines. The details of creating an MSL driver NLM are
discussed in Appendix A.

Version 1.00 2 – 1

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

MSL Driver Components

Driver Procedures

Every MSL driver must provide certain mandatory procedures in order
to function properly. Additional procedures may be added to support
the specific requirement of the MSL adapter.

The MSL driver consists of the following base procedures:

• DriverInitialize

• DriverControl
• DriverSend

• DriverBuildSend
• DriverEmergencySend

• DriverISR

• DriverRemove

Brief descriptions of the above MSL procedures are provided on the
following pages. These descriptions are general and do not necessarily
apply in every case. Chapter 4 provides detailed descriptions of the
required procedures.

DriverInitialize

The DriverInitialize routine is called by the operating system when the
driver is loaded. It performs all adapter hardware initialization and
testing. The DriverInitialize routine also uses operating system support
calls to perform the following tasks:

• Allocate required resource tags
• Determine the hardware configuration
• Register the hardware configuration with the OS
• Set up for the Interrupt Service Routine
• Register the driver with the OS
• Schedule timer events for error detection and recovery

DriverControl

The MSL DriverControl routine is the entry point for all the driver’s
control procedures. The driver must implement two control procedures,
GetMSLConfiguration and the GetMSLStatistics. These procedures
provide statistical and configuration information to the caller.

2 – 2 Version 1.00

MSL Driver Overview

DriverSend

The operating system calls the MSL’s DriverSend procedure to transmit
a single message to the other server. The driver is responsible for
building the message packet from information provided by the OS. The
driver should not attempt to use the DriverSend procedure’s execution
time to receive a packet. It should simply build the message packet,
initiate the transmission, and begin a transmit timeout sequence.

DriverBuildSend

The DriverBuildSend procedure allows the MSL driver to send multiple
messages in a single packet. The operating system queues messages
when the driver is busy transmitting another message. Once the driver
receives a message acknowledgement, it must obtain any queued
messages. DriverBuildSend is used to build the multi-message packet.

DriverEmergencySend

The SFT III operating system uses the DriverEmergencySend procedure
to inform the other server that this server is about to go down.
The DriverEmergencySend procedure is responsible for sending the
emergency notification (or packet). The driver should make its best
attempt to inform the other server of the emergency. This may even
include aborting the current operation to send the emergency signal.

DriverISR

The Interrupt Service Routine (ISR) must handle all interrupts
generated by the adapter. An interrupt may indicate any one of the
following conditions:

• Message packet received
• Acknowledgment received
• Holdoff notification received
• Emergency notification received
• Reception error encountered
• Transmission complete
• Transmission error encountered

Version 1.00 2 – 3

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

DriverISR is called by the system ISR (which actually receives the
interrupt) for all hardware interrupts. The driver ISR must perform
the following tasks:

• Clear the interrupt on the adapter
• Issue End of Interrupt commands (EOIs)
• Perform all functions to service the interrupt, such as:

- Process messages
- Cancel/start timer events
- Retry unsuccessful operations
- Post completion status
- Check for additional operations to initiate

• Return (do not iret) to the caller (the system ISR)

The DriverISR code must run with interrupts disabled due to its
function within the driver and SFT III architecture.

DriverRemove

The DriverRemove routine is called by the console command processor
in response to an unload command. This procedure must cancel all
timers and operations, remove all requests, and free all resources
allocated by the driver. On return from this procedure, the driver is
removed from the file server memory.

Data Structures and Variables

In addition to the procedures described in the previous section, the
driver must also contain certain data structures and variables. The
primary structures include the Driver Statistics Table and the Driver
Configuration Structure.

Chapter 3 provides detailed descriptions of all required MSL driver data
structures and variables.

2 – 4 Version 1.00

MSL Driver Overview

Message Packet Format

A message packet is composed of one or more messages preceded by a
media header (as required) and an MSL header containing information
about the packet. A message consists of a message header (parameters
corresponding to registers EAX, EBX, ECX, EDX, ESI, and EDI),
followed by variable-length message data. A message could also consist
of the message header only (zero-length data).

A majority of the messages will be about 24 bytes in length. As stated
above, a single message packet can contain one or more messages.
Multi-message packets are used when the operating system has several
messages queued up or back logged for transmission. Thus for the sake
of efficiency, the capability to handle large packets containing many
messages is desirable.

The following example is one possible layout for a message packet. The
actual packet format as well as the elements in the header portions
may vary according to the requirements of your particular MSL
implementation.

Media Header Destination Address ←As required

←As requiredSource Address

Packet Length

MSL Header Packet Type ←Optional

Number of Messages

Sequence Number ←Optional

Message 1

Header
EAX parameter

EBX parameter

ECX parameter ←Size of message data

EDX parameter

ESI parameter ←Address of data in server memory

EDI parameter

Message 1 Data

•
•
•

•
•
•

Additional messages

Version 1.00 2 – 5

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

MSL Driver Environment

MSL drivers operate as an integral part of the NetWare SFT III
operating system. Therefore, the developer must understand the
following operating system characteristics when writing the MSL driver
code.

Multi-Tasking, Non-Preemption OS

The NetWare SFT III operating system is multi-tasking and non-
preemptive. Non-preemptive means that a process does not lose its
thread of execution unless it deliberately relinquishes control. A phrase
frequently used to describe this mode of operation is "run to
completion." Driver routines, therefore, must not dominate system
resources. Processes must behave in a friendly fashion and periodically
relinquish control so other processes will have an adequate opportunity
to execute.

32-Bit Protected Mode

The NetWare operating system executes in 32-bit protected mode,
therefore, all drivers must run in 32-bit mode. Some NetWare APIs
allow drivers to call functions that switch to real mode, cause a real
mode interrupt, then restore 32-bit mode operation. These APIs are for
initialization and configuration only, and if used otherwise, would
severely impact server performance.

Drivers may always assume SS=ES=DS, but should not assume that CS
is identical to DS.

Reentrancy

NetWare SFT III currently does not support reentrancy for Mirrored
Server Link drivers.

Execution Times

Drivers must comply with several execution level restrictions defined
by the OS. The two principal execution times are process time and
interrupt time. As you write the driver, you must be aware of which
routines are called at process time, at interrupt time, or at either time.
The times at which a driver procedure is called affect which operating
system support routines the driver can access. The execution time
restrictions for the OS calls are documented in Chapter 5. The
execution levels and their associated environments are described in the
following sections. Driver routines must not violate the defined
environment of the execution level.

2 – 6 Version 1.00

MSL Driver Overview

Process Time

At process level, the code executing is the process currently scheduled
by the OS. Driver routines called at this level also execute as an
extension of the current executing process. There are two types of
process time routines: Blocking routines, which may suspend their own
execution to allow other processes on the run queue to execute, and
Non-Blocking routines, which do not suspend execution.

A Blocking Process Level routine may suspend its execution until a
specified function completes, by making calls to system routines that
suspend the process. All routines described in Chapter 5 may be called
at this level, whether indicated as blocking or non-blocking.

Interrupts are normally enabled upon entry to routines at this level.
Drivers may need to disable interrupts for a period of time during these
process-level routines to call system support routines or to maintain
driver integrity. Care should be taken to disable interrupts for the
absolute minimum period required to accomplish the necessary tasks.
Disabling interrupts for any significant period will cause server
performance degradation and poor response.

Routines at this level may execute for a few milliseconds before
returning to the operating system. If a routine requires more than a
few milliseconds to complete, the driver must cause a task switch by
calling CRescheduleLast or DelayMyself. This allows other NetWare
processes to execute in a timely manner. Failure to do so may cause
the operating system to indicate the violation on the server console.

The driver-defined procedures called at the blocking process level are:

• DriverInitialize

• DriverRemove
• Driver SleepAESProcessEvent(s)

A Non-Blocking Process Level routine may not suspend its execution.

Routines called from this level may not make calls to blocking routines.
Only system routines indicated as non-blocking may be called at this
level.

Interrupts are disabled upon entry to routines at this level, with the
exception of the NoSleepAESProcessEvent entry.

The driver-defined procedures called at the non-blocking process

level are:

• Driver NoSleepAESProcessEvent(s)

Version 1.00 2 – 7

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Interrupt Time

Interrupt level routines execute under the identity of the current
process (the process whose execution was interrupted). Because the
current process is unknown upon entry at this level, interrupt level
routines cannot make blocking calls or in any way affect a thread
switch. Only system routines indicated as non-blocking may be called
during interrupt level. Interrupts are always disabled upon entry to
routines at this level.

Driver-defined procedures called at interrupt level are:

• DriverISR

• Driver Interrupt Time Callback(s)

The system ISR (which actually receives the interrupt) saves all
registers, initializes the segment registers, and clears the direction flag
before calling the driver’s ISR. The driver must simply issue EOI
commands, service the interrupt, and return (do not use iret).

MSL drivers must run with interrupts disabled during the entire ISR.

Process or Interrupt Time

Procedures that can be called at either process or interrupt time must
not make any blocking calls or violate the rules related to execution at
interrupt time.

Procedures which may be called at either process or interrupt level are:

• DriverSend

• DriverBuildSend
• DriverEmergencySend

2 – 8 Version 1.00

MSL Driver Overview

C Calling Conventions

Most operating system support routines provided for drivers, as well as
the several driver routines exported to the NetWare OS, must follow
C subroutine calling conventions. The following sections detail the
conventions to which drivers must adhere.

Being Called by a C Routine

Several driver routines called by NetWare must use C subroutine
calling conventions. Any parameters passed to the driver routines are
pushed on the stack in C-compatible reverse order. Driver routines that
require use of passed parameters must retrieve them from the stack.
The driver routines called must save registers EBP, EBX, ESI, and EDI
on the stack upon entry and must restore them before returning to the
caller.

Calling C Support Routines

The majority of the NetWare operating system support routines use
standard C conventions. A few register-based routines are provided for
the sake of efficiency. In most cases, parameters are passed on the
stack when calling system routines. Drivers do not need to save
registers EBP, EBX, ESI, and EDI when making system calls. These
registers are saved by the routines called. All calls are NEAR due to
the flat memory model used by NetWare.

To call a NetWare routine:

1) push all variables on the stack
2) call the routine
3) adjust the stack pointer upon return

Example

A NetWare call to a driver’s initialization routine would have the
following syntax:

long DriverInitialize (

long ModuleHandle ,

long ScreenHandle ,

byte *CommandLine ,

long reserved0 ,

long reserved1 ,

long LoadableModuleFileHandle ,

long (*ReadRoutine) () ,

long *CustomDataOffset ,

long CustomDataSize) ;

Version 1.00 2 – 9

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Some NetWare support routines require use of parameters passed on
the stack when DriverInitialize is called. These values should be saved
by the initialization procedure for later reference. For example, the
driver’s initialization routine must call the NetWare support routine
ParseDriverParameters, which appears to the driver as shown below.
To pass the command line pointer and screen handle, the driver’s
initialization routine must retrieve them from the stack.

long ParseDriverParameters (

struct IOConfigurationStructure *DriverConfiguration ,

long reserved0 ,

struct AdapterOptionStructure *AdapterOptions ,

long reserved1 ,

long reserved2 ,

long NeedsBitMap ,

byte *CommandLine ,

long ScreenHandle) ;

Given the syntax shown above, a typical initialization routine could call
ParseDriverParameters as shown below.

DriverInitialize proc

CPush
mov ebp, esp
pushfd
cli

•
•
•

push [ebp + Parm1] ;ScreenHandle
push [ebp + Parm2] ;CommandLine
push NeedsIOPort0Bit OR NeedsInterrupt0Bit ;Parse for port and int
push 0 ;reserved
push 0 ;reserved
push OFFSET AdapterOptions ;Adapter Options Structure
push 0 ;reserved
push OFFSET DriverConfiguration ;IOConfiguration

call ParseDriverParameters

add esp, 8 * 4

2 – 10 Version 1.00

MSL Driver Overview

Note that the parameter values passed to ParseDriverParameters are
pushed in reverse order. After the initialization routine calls
ParseDriverParameters, it adjusts the stack pointer by 8 * 4.
Eight push instructions times four bytes (each push is one dword).

In the example, Parm0, Parm1, ...etc. are defined as follows:

ParmOffset equ 20
Parm0 equ ParmOffset + 0
Parm1 equ ParmOffset + 4
Parm2 equ ParmOffset + 8
Parm3 equ ParmOffset + 12
Parm4 equ ParmOffset + 16
Parm5 equ ParmOffset + 20
Parm6 equ ParmOffset + 24
Parm7 equ ParmOffset + 28
Parm8 equ ParmOffset + 32

ParmOffset represents the 20 bytes normally pushed on the stack when
a C-style call is made (4 by the call instruction, and 16 when saving
EBX, EBP, ESI, and EDI). Defining the stack offsets this way is one
method that can simplify the retrieval of parameters off the stack.
However, the driver can use any method preferred.

Version 1.00 2 – 11

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

2 – 12 Version 1.00

